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ABSTRACT: We have calculated a number of neutron- and photon-induced reactions for the
actinide nuclei 232Th, 2~U, and 237Np. By fitting average resonance capture (ARC) measurements
and total neutron capture data, we deduced absolute dipole strength functions for 233Th and
239U We have found that the Ml/El ratio is the same as in the 176Lu case, but the total transition
strength was larger by about 2770.

1. CALCULATIONS

All calculations were made with our versions of the STAPRE[l] and COMNUC-CASCADE[2]
nuclear reaction codes, and the neutron optical potential of Madland and Young[3]. Large sets of
modeled, discrete levels were used for the daughter nuclei: 233Th (119 levels), 239U (147 levels). The
nuclear level densities were represented by the Gilbert-Cameron formalism, adjusted to agree with
the discrete level sets. The neutron strength functions, SOand S1, and the DO~are shown in Table 1.

We have observed for some time that the parameterization of gamma-ray strength functions is the
method of choice for predicting gamma-ray transmission coefficients. For a given multipole type X/,
the two quantities are thus related: TYX,(EY) = 2zEY 2’+*f E ), where the transmission coefficient,
T

X1( y
yxlf and in most cases the strength function, fxl, are functions of the transition energy. We model

f~l(EY) with an energy-dependent Breit-Wigner (EDBW) line shape. The one adjustable parameter
17GLu[5] We model the Ml strength function to be a constant, in theavailable was fixed in a study of .

Weisskopf single-particle approximation, with a value usually extracted from ARC and total neutron
capture measurements. The form of the ‘Ml strength function cannot be correct, because it doesn’t
yield a finite sum rule. However, for 17bLu because the M1/E 1 ratio at energies below 1 MeV and in
the energy range 5.2–6.2 MeV are model;d correctly and the combination of El and Ml strength
functions produced a correct total radiation width, the absolute values and the functional form for
the Ml cannot be too much in error.

Table 1. Some calculated and literature parameter values for 233Th and 239U.
1

233Th 239U

Computed Literature[4] Computed Literature[4]

so x 104 1.22 0.84 * 0.07 1.08 1,2 * 0.1

s, x 104 2.00 1.48 * 0.07 2.38 1,7 t 0.3
DoJMeV) 1.80 X 10-5 1.68 x 10-5 1.82 X 10-5 2.09 X 10-5

f~l(MeV-3) at Ey = 5 MeV 1.02 x lcl-7 9.72 X 10-8

f~l(MeV -3, 2.10 x 10-8 2.10 x 10-8

r~l(meV) 11.4 9.1

r~l(meV) 14.0 11.3

r,,,,(meV) 25.4 24?2 20.4 23.2 * 0.3

* This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore
National Laboratory under contract number W-7405 -ENG-48.
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2. RESULTS

We tested our El systematic for a variety of nuclei from the mass-90 region, through the lanthanide
region, and up to tungsten and bismuth[6-8], obtaining good results, using reasonable values for fM1.
However, when we examined the ARC measurements[9,10] and total neutron capture data[ll,12] for
targets 232Th and ‘8U we found that the ratio f~l/fE1(EJ, for 3.6 < EY < 4.8 MeV, was the same as
for the lower mass regions, but the total dipole transition strength had to be increased by about 27%.
We have applied this increase to all of our subsequent calculations.

Some of our results for target 238U are shown in Fig. 1, compared with Lorentz fits to measurements
[13,14]. Our calculations employed an EDBW rather than a Lorentz line shape and are expected to
fall below an equivalent Lorentz curve for photon energies less than 11 MeV. In Fig. 2, we show our
calculated results for photoabsorption and photoneutron reactions on target ‘7Np, compared with
measurements of Bergere, et al.[15] and Geraldo, et al.[16J. The photoneutron estimation was made
using the ratio rn/rf = 1.28 t 0.15 from Ref. 16, together with the calculated total photoabsorption
cross section.

3. CONCLUSIONS

Based on our studies of targets ‘2Th 238U, and ‘7Np, some of the results of which have been
presented here, we now have confid~nce in modeling dipole strength functions in the actinide
region, as we do in the lower mass regions. The reason for the 27% increase in the dipole strength is
not known, although possible explanations come to mind (contribution to the sum rule of exchange
terms, etc.). We show in Figs. 3 and 4 the absolute E 1 and Ml strength functions we have derived as
solid rectangles, compared with the experimental values compiled by McCullagh et al.[17J In the El
case, we show not the strength function, f~l(EY), but rather the function S~l = f~l(EY)A - “3EY” 2; this
helps to remove most of its energy and mass dependence. The sizes of the rectangles representing
our absolute values are estimates of the error limits of these values. We intend to study other mass
regions in the future, in order to expand our understanding of dipole strength functions.
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Fig. 1 Calculated photoabsorption cross sec-
tions for 23*U, compared with Lorentz fits to
measurements[13,14]
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Fig. 2 Calculated and measured[15,16] results
for photoabsorption and photoneutron cross
sections for target 237Np
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Fig. 3 Absolute El strength function values
derived in this work (solid rectangles) for
‘3Th and 239U (for EY = 5 MeV) compared with
measured values compiled in Ref. 17; also in-
cluded are absolute E 1 strengths we deduced

w 176Lu[5,6]previously for Y,
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